Detection and Visualization of Subspace Cluster Hierarchies
نویسندگان
چکیده
Subspace clustering (also called projected clustering) addresses the problem that different sets of attributes may be relevant for different clusters in high dimensional feature spaces. In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierarchies) that improves in the following points over existing approaches: First, DiSH can detect clusters in subspaces of significantly different dimensionality. Second, DiSH uncovers complex hierarchies of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are embedded within higher-dimensional subspace clusters. These hierarchies do not only consist of single inclusions, but may also exhibit multiple inclusions and thus, can only be modeled using graphs rather than trees. Third, DiSH is able to detect clusters of different size, shape, and density. Furthermore, we propose to visualize the complex hierarchies by means of an appropriate visualization model, the so-called subspace clustering graph, such that the relationships between the subspace clusters can be explored at a glance. Several comparative experiments show the performance and the effectivity of DiSH.
منابع مشابه
Finding Hierarchies of Subspace Clusters
Many clustering algorithms are not applicable to high-dimensional feature spaces, because the clusters often exist only in specific subspaces of the original feature space. Those clusters are also called subspace clusters. In this paper, we propose the algorithm HiSC (Hierarchical Subspace Clustering) that can detect hierarchies of nested subspace clusters, i.e. the relationships of lowerdimens...
متن کاملFinding and Visualizing Subspace Clusters of High Dimensional Dataset Using Advanced Star Coordinates
Analysis of high dimensional data is a research area since many years. Analysts can detect similarity of data points within a cluster. Subspace clustering detects useful dimensions in clustering high dimensional dataset. Visualization allows a better insight of subspace clusters. However, displaying such high dimensional database clusters on the 2-dimensional display is a challenging task. We p...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملOutlying Subspace Detection for High-Dimensional Data
Knowledge discovery in databases, commonly referred to as data mining, has attracted enormous research efforts from different domains such as databases, statistics, artificial intelligence, data visualization, and so forth in the past decade. Most of the research work in data mining such as clustering, association rules mining, and classification focus on discovering large patterns from databas...
متن کاملEstimating the Number of Wideband Radio Sources
In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007